应用笔记 1199

Voltage-Inverter IC Forms High-Efficiency Rail Splitter

A switched-capacitor voltage inverter configured as a "rail splitter" (IC1 in Figure 1) provides a bipolar (dual-rail) local power supply that is useful in single-rail systems featuring one or more dual-rail ICs. Moreover, the tiny SOT-23 package and associated components require very little board area.

Figure 1. This compact and efficient charge-pump circuit implements a local dual-rail supply for single-rail systems.
Figure 1. This compact and efficient charge-pump circuit implements a local dual-rail supply for single-rail systems.

After power is applied, the flying capacitor (C2) connects alternately across the storage capacitors C3/C4 and C5/C6. This action equalizes the voltages on those capacitors and draws current from VIN or VOUT as required to maintain VOUT ≈ ½VIN.

If the loads across VIN-VOUT and VOUT-0V are equal, the IC sits in a quiescent state and draws about 36µA. To keep VOUT at the mid-rail level, the flying capacitor needs only to supply the difference current caused by unbalanced loads. Efficiency is degraded by the IC's quiescent current for load currents below 100µA, but above 1mA the efficiency is greater than 90%—an excellent feature for low-power or battery-powered applications. (Voltage error and efficiency vary with the load current, as shown in Figures 2 and 3.)

Figure 2. The output voltage error in Figure 1 increases with load current.
Figure 2. The output voltage error in Figure 1 increases with load current.

Figure 3. Efficiency also increases with load current in Figure 1.
Figure 3. Efficiency also increases with load current in Figure 1.

This switched-capacitor circuit provides better regulation than that of a simple voltage divider, and better efficiency than that of a simple combination of divider and op-amp buffer. Its main drawback is the increase in output noise with load (see Table 1). VIN is restricted (by the IC specifications) to a maximum of 5.5V, which is the maximum voltage allowed between pins 2 and 4 or between pins 1 and 4.

RLOAD
(Ω)
INPUT CURRENT
(µA)
VOUT
ERROR
(mV)
OUTPUT
CURRENT
(µA)
RIPPLE
(mVP-P)
EFFICIENCY
(%)
36.5
10M 36.5 0.25 0.34
10M 37.7 2.5 3.32
100k 48.9 0.1 25 25.56
10k 156 1.4 250 ~1 80.04
1k 1240 13.5 2490 ~5 99.72
470 2630 28.5 5260 ~8 98.83
100 11,410 126.9 23,700 ~30 98.71

A similar idea appeared in the August 1, 1997 issue of EDN.


相关型号
MAX829 免费样品
下一步
EE-Mail 订阅EE-Mail,接收关于您感兴趣的新文档的自动通知。
Download 下载,PDF格式
© , Maxim Integrated Products, Inc.
The content on this webpage is protected by copyright laws of the United States and of foreign countries. For requests to copy this content, contact us.
APP 1199:
应用笔记 1199,AN1199, AN 1199, APP1199, Appnote1199, Appnote 1199