应用笔记647

利用比较器/DAC组合解决数据采集问题


摘要:以下讨论验证了一个被现存A/D转换器应用所忽略的选择:有些条件下采用分立的比较器和D/A转换器更容易实现A/D转换。这种替代方案通常采用不同的测试方法,但是具有低成本、高速度、更大灵活性以及更低功耗等优点。

尽管当前趋势全部集中一个方向—设计者需要使用A/D转换器时通常选定一个集成的A/D转换器(ADC)。大多数工程师并没有意识到还有降低ADC性价比的其它替代方案。而模拟比较器、D/A转换器(DAC)和信号处理一起恰好就是构成逐次逼近ADC的核心电路。

某些特定领域,分立比较器/DAC的使用非常普遍。自动测试设备、核脉冲反应堆高度监测器以及自动化时域反射计等,通常都采用这种技术,DAC用于驱动比较器的一个输入,另一个输入由被监测信号驱动。接下来是通用测试问题以及特定方法的选择,事实上,此时采用比较器/DAC组合比采用现成的ADC更受欢迎。

瞬态电压分析

捕获快速幅度变化事件(瞬态)的“强力”技术就是采用处理器支持的高速ADC和RAM对其进行简单量化(图1)。单触发事件可能必须采用这种方法,因为需要获取瞬态细节。然而,如果瞬态是重复性的,则可采用DAC/比较器的方法测量它们的峰值幅度及其它特性(图2)。

图1. 采用“强力”法进行瞬态分析,ADC电路耗电大且价格昂贵
图1. 采用“强力”法进行瞬态分析,ADC电路耗电大且价格昂贵

图2. 如果图1应用可接受对幅度进行重复测量,用DAC/比较器组合替代ADC可省电并降低成本
图2. 如果图1应用可接受对幅度进行重复测量,用DAC/比较器组合替代ADC可省电并降低成本

比较器的一个输入引脚由DAC设置判定电平,瞬态信号施加到另一个输入。通过调整DAC输出可确定峰值瞬态幅度,超越门限时,采用数字锁存捕获比较器的输出响应。仅需要比较器输入支持瞬态带宽,任意长的DAC输出建立时间并不会影响测量精度。这样,在模拟域可用低成本DAC和比较器代替昂贵的ADC。

需注意的是,在监视模拟电压时必须考虑容限。许多自诊断设备监视系统电压、温度以及其它模拟量,容限值在软件中设置。然而,如果这种比较由比较器实现,设置值由DAC提供,这样可减轻处理器负荷,因为只需要读取一位来表示超限状态。

这种技术(模拟域比较)与ADC技术(数字域比较)具有相同精度,对于一个设置点时,可通过简单比较实现,为什么还要对整个值进行量化?必须提及的一种情况是:如果与几个设置点进行比较时,例如:报警上限/下限和关断的下限/上限电平,可选择ADC,否则需要4路DAC和4个比较器。

由DAC构建简单的ADC

便携式仪器受成本和尺寸限制,有些情况下可以利用DAC实现A/D转换功能。例如,蜂窝电话和医疗电子通常采用DAC调整LCD对比度电压(图3)。有时可通过简单添加一个比较器和开关,监视温度或电池电压(如上所述)。那么现有DAC可执行两种任务,在DAC执行模拟至数字转换时关闭显示器。作为另一种替代方案,由模拟开关和电容构成的简单采样/保持电路(图4)可在A/D转换期间维持LCD的对比度电压。

图3. 该电路常见于便携仪器
图3. 该电路常见于便携仪器

图4. 对图3增加两个比较器,由DAC实现ADC功能,节省成本
图4. 对图3增加两个比较器,由DAC实现ADC功能,节省成本

另外一种方法就是用一个低成本双路DAC替代现有单路DAC。双路DAC中的一路用于产生LCD对比度电压,另一路用于构成ADC。无论单路还是双路,都需要DAC和比较器支持快速、驱动DAC的简单程序,以及对比较器采样来实现逐次逼近(参见sidebar逐次逼近)。

设计考虑

DAC和比较器的结合非常简单。信号作用到比较器的同相输入端,DAC提供的数字可编程门限作用到反相输入端。只要信号比门限值大,比较器就会产生逻辑高电平输出。但在使用时必须注意几个方面。

为确保精确的门限电平,考虑到比较器的输入偏置电流以及比例网络,DAC的直流输出阻抗应很小。在超低功耗电路中更应注意,DAC的输出阻抗可能高达10kΩ。

DAC的另一个要求是低交流输出阻抗。否则,比较器输出的高速数字信号的压摆率经过布线寄生电容耦合,将产生输入瞬态变化,导致自激并降低精度。如果允许牺牲一定的建立时间,可在比较器输入端增加一个旁路电容来降低DAC的交流输出阻抗。DAC输出放大器的大电容负载可导致不稳定或振荡,但这个问题可在DAC输出串联一个电阻加以修正。

比较器的主要问题是滞回。大多数比较器电路带有滞回,以防止噪声和振荡,但使用滞回时必须谨慎—它会造成门限值随输出而改变。如果系统可对受输出状态影响的滞回进行补偿,可以接受这种配置;否则,应当避免滞回。

如果采用的比较器具有内部滞回并且不能禁止,可确保DAC输出总是在相同方向逼近比较器门限,这样可消除负面影响。通过在每位测试完成后将DAC设置为零,便于达到这一目的;例如,在本文最后列出的伪代码后增加一行(参见sidebar逐次逼近)。

另一选择是,通过增加一个小电容反馈也可消除滞回,这会加速比较器在线性工作区的转换。或者,增加一个输出触发器或锁存器,在给定时刻捕获比较器输出状态。

当前比较器都能够很好地处理摆率受限的输入信号。例如,Maxim公司的MAX913和MAX912在这方面尤其有效,因为它们在线性工作区能够确保稳定。图5列举了MAX913在高速、12位应用中的性能。图6电路(超低功耗8位转换器)在不使用时可将其关闭以节省能量。

图5. 由于比较器在其线性工作区保持稳定,该高速、12位幅度采集器可处理低速输入电压而不会出现振荡
图5. 由于比较器在其线性工作区保持稳定,该高速、12位幅度采集器可处理低速输入电压而不会出现振荡

图6. 该低电压、8位数据采集器替代ADC具有几个优势:低成本、低功耗、以及采样间隔期间关断功能
图6. 该低电压、8位数据采集器替代ADC具有几个优势:低成本、低功耗、以及采样间隔期间关断功能

DAC/比较器组合IC

Maxim提供3款单芯片器件可大大简化设计,这些芯片组合了比较器和DAC。每款器件都非常适合本文应用及其它多种应用。

例如,MAX516是一款4通道器件,具有亚微秒速度,非常适合多种中等速度、多通道应用(图S1a)。

图S1. Maxim 8位DAC/比较器IC包括4通道MAX516 (a)、高速、TTL兼容MAX910 (b)、以及ECL兼容MAX911(未列出)
图S1. Maxim 8位DAC/比较器IC包括4通道MAX516 (a)、高速、TTL兼容MAX910 (b)、以及ECL兼容MAX911(未列出)

MAX910是单通道、高速、TTL输出DAC/比较器,具有8ns传输延迟(图S1b)。类似器件(MAX911)具有更高速度——ECL互补输出,4ns传输延迟。

逐次逼近

逐次逼近采用天平和一系列用于确定物体重量的二进制权重(权重相对值为1、2、4、8、16等)的方式很容易说明。确定一个未知重量的最快方法(逐次逼近),首先,将未知重量与最大权重进行比较。根据天平指示,要么移除该重量,要么增加下一个最大重量,按这种方式一直到最小的权重。物体的重量就是天平盘上剩余权重的总和。

在逐次逼近ADC中,内部DAC的位模拟系列二进制重量,比较器输出模拟天平指示。驱动权位处理的逻辑保存在封装好的ADC的逐次逼近寄存器(SAR)或者控制DAC/比较器电路的处理器软件子程序,该子程序可由不到20行的代码来实现。

表S1. 逐次逼近伪代码

应用

本章节列举了DAC/比较器架构比集成ADC所具备的优势。所讨论的应用电路既常见又简单,但然,也存在一些共性问题。

首先,考虑采用低成本方法实现电力线电压跌落、浪涌以及瞬态检测和故障记录。理想的设计是采用墙上设备监测电力线异常,并将每次异常发生的时间记录到RAM中(电压跌落和浪涌的持续时间可以从几毫秒到几小时;瞬态可能短至10微秒)。监视器必须记录电力线完全失效的持续时间,因此,监视器应当由电池供电。

传统解决方案是采用控制器和ADC。由于转换器连续对电力线电压采样,控制器需将每次采样值与软件中用户设定的限制进行比较,并将任何超出规定的状态记录到RAM。由于系统必须能够追踪到短至10µs的瞬态情况,ADC采样间隔必须相当短—保守估算时间可以长达2.5µs。因此,控制器必须以1/2.5µs = 400ksps的速率进行采样处理。

如果软件比较具有高效编码并且ADC无需处理器干预,系统每次采样可执行少于10条指令,这就要求处理器具有4MIPS的能力。这种执行能力并不适合采用电池供电(图1)。需要考虑用模拟方法对输入瞬态偏离进行响应,用以替代连续跟踪方案。

在这种情况下,DAC/比较器替代方案提供了几个明显优势。需要4个DAC和4个比较器(或一片MAX516),后面连接一个4路设置/复位触发器。一组DAC/比较器/FF监测高瞬态电压,一组监测低瞬态电压,一组用于监测电网跌落,一组用于监测浪涌(图2)。瞬态电压直接耦合到比较器,连接到电压跌落和浪涌监测比较器的输入首先要进行整流和滤波,以获得电网电压的平均值。可在软件中调整到合适的rms。

系统每T秒进行采用并对触发器复位,此处T为瞬态记录时间分辨率(也许为60s)。高、低瞬态电平DAC用于设置所要求的门限。电压跌落和浪涌DAC在每T秒间隔后进行调整,采用逐次逼近技术产生高、低门限,以跟踪目前平均值。

假设执行逐次逼近以及其它任务的子程序具有1000条指令(保守估计),对于T = 60s,CPU平均每秒执行17条指令。执行速率是0.00002 MIPS—非常适合低功耗系统,远远低于ADC方案的4 MIPS。为进一步降低功耗,控制器可在大部分时间内处于“休眠”,仅在处理电力线异常时唤醒。将电压比较从软件方式转换为模拟硬件方式,该电路大大降低了功耗、设计复杂性以及成本。

较低的故障检测和诊断维护成本

打印头控制、车辆控制以及许多其它机电应用,需严格监视内部电压和温度以确定何时更换工作模式。极端情况下,这种反馈可使系统避免全部关断自毁。例如,在必要时步进电机控制器必须调整输出MOSFET的栅极驱动以避免线性工作时消耗过多功率。

监测这些问题的传统方法是采用ADC (图7a)。处理器控制ADC进行周期性测量,与控制处理保持时间常数一致。然后对结果的量化值进行缩放后与软件中的门限进行比较。如果超出范围,可触发纠正动作或者全部关断系统。

另外一种方法是采用DAC/比较器组合(图7b)。静态DAC输出建立关断门限或比较器触发值。当温度变化造成比较器触发,比较器会对处理器发出中断来启动纠正动作,必要时,处理器还可以通过启动基于软件的逐次逼近程序来确定极限温度值。

图7. 在这种情况下,用DAC和比较器(b)替换ADC (a)可降低系统成本、响应时间以及软件开销
图7. 在这种情况下,用DAC和比较器(b)替换ADC (a)可降低系统成本、响应时间以及软件开销

另一方面,为支持ADC,处理器在跳转到关断子程序之前必须轮询ADC、输入采样值并与先前设定值进行比较。这样,DAC/比较器不仅节约成本,而且提供了比采用ADC的更快响应;同时还减小了处理器开销。

时域反射计

最后,低成本、低功耗DAC/比较器组合(相对于ADC)在便携式时域反射计(TDR)中非常实用—一种用于检测电缆的不连续性并可测量中间传输长度的仪器。廉价的便携式TDR随着网络电缆的增加变得非常普遍。

TDR工作原理类似于雷达;沿着线缆发送一个主脉冲并监测由开路、短路、或者其它电缆阻抗不连续产生的反射。发射脉冲及其反射波传输延时间隔大约为每英尺3.3ns,假设线传输速率为0.6c (光速的十分之六)。那么,在电子学上10ns时间分辨率可分辨出大约3英尺距离的不连续性。

接收到的脉冲幅度和发送脉冲幅度的比用于计算反射系数。知道反射系数和电缆阻抗就可以计算不连续阻抗,从这些信息可推断出不连续的原因。同轴电缆在反射回路上对脉冲的衰减使其变得复杂,因此,软件必须对此进行补偿,通常根据测量距离施加一个幅度修正。

本应用中的ADC必须每个5ns转换一次(200Msps)。尽管厂商可以提供这种ADC,但价格非常昂贵,而且功耗大,通常不适合便携式应用。

实际应用中的手持式TDR模拟前端(图8)能够说明上述观点。为了便于说明,这里没有包括数字电路。尽管简单并且没有特殊元件,该电路仍具有很好性能。能够可靠地测量端接阻抗并且对于500英尺长的电缆具有5%测量精度。可测量长达2000英尺的开路或短路故障。重要的是,系统(包括显示和数字电路)可在9V碱性电池下工作长达20小时。

图8. 该时域反射计的模拟部分采用DAC/比较器代替ADC
图8. 该时域反射计的模拟部分采用DAC/比较器代替ADC

图8中比较器(IC3)采用单电源供电、地电位检测以及仅10ns传输延迟。DAC (IC4)为双通道器件,一方面用于脉冲高度测量,另一方面驱动LCD对比度控制(如图3)。注意DAC为反向驱动;电流输出端连接在一起由经过缓冲的电压基准驱动,基准输入作为电压输出(每路带有一个外部放大器缓冲)。

利用简单的脉冲单稳态电路(没有列出)驱动Q1基极,利用正向、持续时间为10ns的脉冲依次驱动电缆。电缆的所有反射通过C3耦合到比较器。

IC5为1.2V输出带隙基准,由放大器IC2d缓冲,为IC4双路DAC提供基准电压。该基准电压被IC2c两倍增益放大器放大后,为比较器同相输入提供2.5V直流电平。DAC A在比较器反相输入端施加一个0V至3.8V电压。高于2.5V的电平用来判断正向脉冲高度,低于2.5V的电平用来判断负向脉冲幅度。

每个输入到传输线的脉冲还经过了数字电路可变延迟线,该延迟线是由计数器控制的20ns延迟单元串接而成。来自数字部分经过延迟的脉冲驱动两个触发器(IC1a和IC1b)的D输入端,触发器由比较器互补TTL输出轮流触发。这样,时间测量取决于返回脉冲和通过延迟线脉冲的竞争:如果D输入比时钟变化到来得早,触发器输出为高,否则,输出为低。

测量时,将DAC输出设置为最低值并重复调整延迟,直到触发器输出保持为零,读取计数器。同样,测量返回脉冲高度时,重复调整DAC输出直到触发器输出保持为零,然后读取DAC。注意,两个触发器需要捕获正脉冲和负脉冲的前沿。前沿是指正脉冲的上升沿和负脉冲的下降沿;如果两个脉冲施加到一个触发器,脉冲宽度可能产生所不期望的延迟。

参考文献

  1. Edward Jordan, Reference Data for Engineers, 7th Edition, (Howard Sams, 1989).
  2. Brian Kenner and John Wettroth, The Design of a Time-Domain Reflectometer, (Computer Applications Journal #29, October/November 1992).
  3. Paul Horowitz and Winfield Hill, The Art of Electronics, 2nd Edition, (Cambridge University Press, 1989).


相关型号
MAX516 四路、由DAC编程设置的、CMOS比较器 免费样品  
MAX941 高速、低功耗、3V/5V、满摆幅、单电源比较器 免费样品  


下一步
EE-Mail 订阅EE-Mail,接收关于您感兴趣的新文档的自动通知。

© Mar 01, 2012, Maxim Integrated Products, Inc.
The content on this webpage is protected by copyright laws of the United States and of foreign countries. For requests to copy this content, contact us.

APP 647: Mar 01, 2012
应用笔记647, AN647, AN 647, APP647, Appnote647, Appnote 647