设计指南4993

Reduce the Chances of Human Error: Part 2, Super Amps and Filters for Analog Interface


Abstract: A common view holds that digital circuits just work naturally, but analog circuits are hard to implement. There is truth to that old belief—analog interface is an expert subject that requires training. It is, moreover, always better to avoid an issue than to try to solve it later. This is precisely why we should take advantage of some basic concepts that experienced analog engineers perform as a reflex. This application note provides some basic reminders and concepts about amplifiers and filters for you to consider during a design.

Introduction

As children we learned to share and in that process we learned about portions. Many parents taught this to children by having one child cut the pie or cake and then letting another child pick the piece first. We can be sure that great care was used to make the pieces all the same size.

We are reminded of a good lesson in life, "It's the ratio that counts." We use ratios in everyday life when we compare distances between different routes or the taste of two foods. (Yes, mom's cooking was better, or maybe we were too young to know any difference?).

Moving from children, pies, and cakes to analog engineering design, we realize that ratios—the relative amount, proportion, percentage, share, part, and fraction—are all important measurements in analog design. When we ignore these ratios and relationships, we introduce human error into what must be a precise process. This application note shares some analog concepts about amplifiers and filters that will help reduce the chances of "human" error and improve the analog design.

Considerations for Signal to Noise (SNR)

Crosstalk and signal to noise (SNR) are expressed as ratios, a proportion of good to bad. How does one improve the SNR of a signal? If a particular circuit contributes considerable noise, we have two basic options: first, reduce the noise somehow, or second, increase the amplitude of the good signal before it goes through the stage. Figure 1 illustrates the concept.

Figure 1. Power-supply noise is added to the signal.
Figure 1. Power-supply noise is added to the signal.

In application note 4992, "Reduce the Chances of Human Error: Part 1, Power and Ground," we concentrated on power noise, ground, and layout. In this companion article we examine how to control noise in the signal path. We discuss the characteristics of the signal and noise as we proceed through the various circuit stages.

Is the major noise source harmonics of a switching power supply? If the power-supply noise is 50kHz and higher and if our wanted signal is 1kHz, then filtering may be feasible. If we will be going into an ADC next, the anti-aliasing filter may help.

Reducing Noise

What possibilities does an experienced circuit designer evaluate? The simplest fix is to amplify the signal before the noise is added. Yes, straightforward enough, but unfortunately this solution most often cannot be used because the incoming signal already has noise present. So now we get creative and consider how to separate the signal from noise? Can we use highpass, lowpass, or bandpass filters? Can we discriminate on the basis of amplitude, limiting, noise blanking, or coring? Can we use preemphasis before the noise is introduced and deemphasis after to increase SNR? Can we discriminate on the basis of time, i.e., sample at a minimum noise level or interference time? Can we time average, or if the signal is repetitive, can we sum cycles or average in two, three, or more dimensions?

Turning from component functions, think about the system as a whole. What are the system goals? How will the system be used? How will the human senses interact with the information provided by the system? In short, consider all the information that we can muster.

The above set of questions reflects considerable design experience and knowledge. This is precisely why smart companies hire experienced engineers and mentor the new engineers to build a solid design team.

We can use an example to illustrate the thinking and development process. The first observation finds that the system has a high-gain operational amplifier at its input. The op amp feeds an analog-to-digital converter (ADC). Occasionally a large noise pulse appears on the signal and this causes the op amp to saturate. The op amp recovery time might be as long as milliseconds or seconds. How will we approach the issue? Since every case will be different, we will just ask questions and point out possible solutions.

First, gather data to try to understand what is happening. Can we fix the source? No. So we decide that the noise spike is unavoidable. What do we know about its risetime amplitude and duration? If the spike is very fast and narrow and our wanted signal is relatively slow, can we separate them by filtering? Can we detect the spike and open a series switch to blank out the spike from the main path? Could we add a pair of diodes like an electrostatic discharge (ESD) structure to clip any signal that goes above VCC or below ground? Can we learn from application note 4344, "Rail Splitter, from Abraham Lincoln to Virtual Ground?" In Figure 2 of that application note we create a voltage between VCC and ground at the average signal level of the wanted signal. If the series resistor was replaced with a pair of back-to-back diodes (Figure 2), the signal spike would be limited to the voltage ±0.6V for silicon diodes (red dashed lines) and ~±0.3V for Schottky diodes (green dashed lines). The reverse recovery time for silicon diodes can be between one hundreds and several hundreds of nanoseconds. Schottky diodes have a switching time of ~100ps for the small signal diodes but, because of their operating physics, do not have a reverse recovery time. The diodes can also be placed in the op amp feedback loop to reduce gain during the spike. Figure 3 shows the effect of limiting.

Figure 2. Replacing a series resistor with a pair of back-to-back diodes.
Figure 2. Replacing a series resistor with a pair of back-to-back diodes.

Figure 3. Diode limiter effect, ±0.3V Schottky, ±0.6V silicon.
Figure 3. Diode limiter effect, ±0.3V Schottky, ±0.6V silicon.

Figure 3 may help relieve op amp saturation and recovery time, but is it enough? We could add circuits to blank out the noise pulse as in Figure 4.

Figure 4. Noise pulse blanking.
Figure 4. Noise pulse blanking.

The block diagram of the blanking circuit is Figure 5.

Figure 5. Noise-blanking block diagram.
Figure 5. Noise-blanking block diagram.

From the basic concept of blanking in Figure 5, more elegance can be added. The input buffer may not be needed if the source is low impedance. R1 and R2 set a DC value as shown in application note 4344, "Rail Splitter, from Abraham Lincoln to Virtual Ground," mentioned above. Alternatively, the input signal could be AC coupled to this same voltage or the input signal could be averaged over the long term to produce this voltage. The main signal path is from the input buffer through a RC delay, the mux, buffer, and lowpass filter to the ADC. The MAX11203 ADC has four general-purpose input or output (GPIO) ports controlled by the SPI interface. The GPIO is set so that the AIN1of the MAX313 multiplexor is on and AIN2 is off. We highpass or differentiate the noise pulse. The dual or window comparator output will be active while the noise pulse exceeds 0.3V in either the positive or negative direction. The XOR gated inverts the logic to the mux, thereby turning off the main path and switching on the DC voltage. The RC delay also delays the main path long enough for the comparator path to change state. If the RC delay degrades the signal bandwidth too much, an LC delay line can be substituted.

The input buffer of Figure 5 could use a MAX4209 instrument amplifier which has incredibly low offset drift despite its high gain. Application note 4179, "Autozero Noise Filtering Improves Instrumentation Amplifier Output," explains why.

The filter just before the ADC in Figure 5 can control signal bandwidth to meet Nyquist anti-aliasing, reduce noise, or soften the residual blanking glitch. The following application notes will provide advice and ideas: Application note 4617, "ADC Input Translator," uses resistor-dividers to scale the differential inputs and a stable voltage reference to offset the inputs. This circuit design enables an ADC with a 0V to 5V input range (e.g., the MAX1402) to accept inputs in the range +10.5V to -10.5V.

Calibration ideas using digital-to-analog converters (DACs) and potentiometers are covered in application notes 4494, "Methods for Calibrating Gain Error in Data-Converter Systems," and 818, "Digital Adjustment of DC-DC Converter Output Voltage in Portable Applications." The digital-output voltage-adjustment methods are performed with DAC, a trim pot (digital potentiometer), and PWM output of a microprocessor. Application note 4704, "Introduction to Electronic Calibration and Methods for Correcting Manufacturing Tolerances in Industrial Equipment Designs," includes a discussion of the DS4303 infinite sample-and-hold to capture a DC Voltage. Other application notes about digital pots include: Analog I/O, interface circuits and digital-port signal protection ideas are discussed in the following application notes: Maxim has watchdog circuits which ensure that microprocessor-controlled devices react in a known manner if the processor loses control. The following application notes offer ideas for using watchdogs: 4558, "Simple Latching Watchdog Timer," and 4229, "Comparison of Internal and External Watchdog Timers."

Microprocessor-controlled system clocks typically are of two types: system clocks controlling computing functions in orderly ways, and real time clocks (RTCs) or clocks that relate to human time concepts. Computer clocks operate like soldiers marching in cadence. This can result in interference products that may not meet regulatory requirements. Clock-generator spread-spectrum techniques to reduce this interference are discussed in these notes: 2863, "The Effects of Adjusting the DS1086L's Dither Span and Dither Frequency on EMC Measurements," and 3512, "Automotive Applications for Silicon Spread-Spectrum Oscillators." RTC ideas are found at www.maximintegrated.com/appnotes10.cfm/ac_pk/21.

Conclusion

Noise and interference control is different in every circuit and system. Thankfully, the laws of physics prevail and engineers must work hard to silence noise. This discussion has tried to help designers anticipate noise and interference issues before the design starts and during the design. After the product is in production, the options for correction are severely limited.

相关型号
DS1085 EconOscillator频率合成器 免费样品  
DS1086 扩频EconOscillator 免费样品  
DS1086 扩频EconOscillator 免费样品  
DS1086L 3.3V扩频EconOscillator 免费样品  
DS1086L 3.3V扩频EconOscillator 免费样品  
DS1087L 3.3V扩频EconOscillator 免费样品  
DS1087L 3.3V扩频EconOscillator 免费样品  
DS1089L 3.3V中心扩频EconOscillator™ 免费样品  
DS1090 低频、扩频EconOscillator 免费样品  
DS1094L 多相扩频EconOscillator 免费样品  
DS1267 ±5V、双路、数字电位器芯片  
DS1804 非易失调节电位器 免费样品  
DS1847 双路、温控、非易失可变电阻 免费样品  
DS1848 双路、温控、非易失可变电阻和存储器 免费样品  
DS1851 双路、温控、非易失数/模转换器 免费样品  
DS3502 高压、NV I²C电位器 免费样品  
DS3903 三路、128抽头、非易失数字电位器 免费样品  
DS3904 三路、128抽头、非易失、数控可变电阻/开关 免费样品  
DS3906 三路、非易失、小步长调节可变电阻与存储器 免费样品  
DS3930 六进制非易失电位器,带有输入/输出和存储器 免费样品  
DS4303 可编程电压基准 免费样品  
DS4303 可编程电压基准 免费样品  
MAX1067 多通道、14位、200ksps模数转换器 免费样品  
MAX1213 1.8V、12位、170Msps ADC,用于宽带系统  
MAX1214 1.8V、12位、210Msps ADC,用于宽带系统  
MAX1215 1.8V、12位、250Msps ADC,用于宽带系统  
MAX12527 双路、65Msps、12位、IF/基带ADC 免费样品  
MAX12528 双路、80Msps、12位、IF/基带ADC  
MAX12553 14位、65Msps、3.3V ADC 免费样品  
MAX12555 14位、95Msps、3.3V ADC  
MAX12557 双路、65Msps、14位、IF/基带ADC 免费样品  
MAX12558 双路、80Msps、14位、IF/基带ADC 免费样品  
MAX1402 +5V、18位、低功耗、多通道、过采样(Σ-Δ) ADC 免费样品  
MAX1480E ±15kV ESD保护、隔离型、RS-485/RS-422数据接口 免费样品  
MAX1488E ±15kV ESD保护、四路、低功耗RS-232线驱动器 免费样品  
MAX1490E ±15kV ESD保护、隔离型、RS-485/RS-422数据接口 免费样品  
MAX1553 高效率、40V、升压型变换器,用于2至10个白光LED驱动 免费样品  
MAX19586 高动态范围、16位、80Msps ADC,具有-82dBFS的噪声底  
MAX253 1W原边变压器H桥驱动器,用于隔离电源 免费样品  
MAX274 四阶及八阶、连续时间方式有源滤波器 免费样品  
MAX275 四阶及八阶、连续时间方式有源滤波器 免费样品  
MAX3080 失效保护、高速(10Mbps)、限摆率、RS-485/RS-422收发器 免费样品  
MAX3083 失效保护、高速(10Mbps)、限摆率、RS-485/RS-422收发器 免费样品  
MAX3088 失效保护、高速(10Mbps)、限摆率、RS-485/RS-422收发器 免费样品  
MAX3188 1Mbps、1µA RS-232发送器,SOT23-6封装  
MAX3190E ±15kV ESD保护、460kbps、RS-232发送器,SOT23-6封装 免费样品  
MAX321 高精度、双电源、SPST、模拟CMOS开关 免费样品  
MAX3223E ±15kV ESD保护、1µA、3.0V至5.5V、250kbps RS-232收发器,带有AutoShutdown 免费样品  
MAX3225E ±15kV ESD保护、1µA、1Mbps、3.0V至5.5V、RS-232收发器,提供AutoShutdown Plus 免费样品  
MAX3226 1µA电源电流、1Mbps、3.0V至5.5V、RS-232收发器,提供AutoShutdown Plus 免费样品  
MAX3228 +2.5V至+5.5V、RS-232收发器,UCSP封装  
MAX3244E ±15kV ESD保护、1µA、1Mbps、3.0V至5.5V、RS-232收发器,提供AutoShutdown Plus 免费样品  
MAX3245E ±15kV ESD保护、1µA、1Mbps、3.0V至5.5V、RS-232收发器,提供AutoShutdown Plus 免费样品  
MAX3311E ±15kV ESD保护、460kbps、1µA、RS-232兼容收发器,µMAX封装 免费样品  
MAX3313E ±15kV ESD保护、460kbps、1µA、RS-232兼容收发器,µMAX封装 免费样品  
MAX3387E 3V、±15kV ESD保护、AutoShutdown Plus RS-232收发器,用于PDA和蜂窝电话 免费样品  
MAX3388E 2.5V、±15kV ESD保护、RS-232收发器,用于PDA和蜂窝电话 免费样品  
MAX3443E ±15kV ESD保护、±60V故障保护、10Mbps、失效保护型RS-485/J1708收发器 免费样品  
MAX3483E 3.3V供电、±15kV ESD保护、12Mbps、限摆率、真RS-485/RS-422收发器 免费样品  
MAX3485 3.3V供电、10Mbps、限摆率、真RS-485/RS-422收发器 免费样品  
MAX3490 3.3V供电、10Mbps、限摆率、真RS-485/RS-422收发器 免费样品  
MAX4167 高输出驱动、精密的低功耗、单电源、满摆幅输入/输出运算放大器,带有关断 免费样品  
MAX4209 超低失调/漂移、高精度仪表放大器,提供REF缓冲器 免费样品  
MAX4232 高输出驱动、10MHz、10V/µs、满摆幅输入/输出运算放大器,带有关断,SC70封装 免费样品  
MAX4238 超低失调/漂移、低噪声、高精度、SOT23封装放大器 免费样品  
MAX4506 故障保护、高电压信号线路保护器 免费样品  
MAX4551 ±15kV ESD保护、四路、低电压、SPST模拟开关 免费样品  
MAX4558 ±15kV ESD保护、低电压、CMOS模拟多路复用器开关 免费样品  
MAX4568 ±15kV ESD保护、低电压、SPDT/SPST、CMOS模拟开关 免费样品  
MAX4575 ±15kV ESD保护、低电压、双路、SPST、CMOS模拟开关 免费样品  
MAX4630 ±15kV ESD保护、低电压、四路、SPST、CMOS模拟开关 免费样品  
MAX4640 ±15kV ESD保护、低电压、四路、SPST、CMOS模拟开关 免费样品  
MAX483E ±15kV ESD保护、限摆率、低功耗、RS-485/RS-422收发器 免费样品  
MAX485E ±15kV ESD保护、限摆率、低功耗、RS-485/RS-422收发器 免费样品  
MAX487E ±15kV ESD保护、限摆率、低功耗、RS-485/RS-422收发器 免费样品  
MAX488 低功耗、限摆率、RS-485/RS-422收发器 免费样品  
MAX491E ±15kV ESD保护、限摆率、低功耗、RS-485/RS-422收发器 免费样品  
MAX5105 非易失、四路、8位DAC 免费样品  
MAX5106 非易失、四路、8位DAC 免费样品  
MAX5109 非易失、双路、8位DAC,带有2线串行接口  
MAX5115 非易失、四路、8位DAC,带有2线串行接口  
MAX5116 非易失、四路、8位DAC,带有2线串行接口  
MAX516 四路、由DAC编程设置的、CMOS比较器 免费样品  
MAX5160 低功耗数字电位器 免费样品  
MAX5355 10位、电压输出DAC,8引脚µMAX封装 免费样品  
MAX5361 低成本、低功耗、6位DAC,带有2线串行接口,SOT23封装 免费样品  
MAX5361 低成本、低功耗、6位DAC,带有2线串行接口,SOT23封装 免费样品  
MAX5363 低成本、低功耗、6位DAC,带有3线串行接口,SOT23封装 免费样品  
MAX5364 低成本、低功耗、6位DAC,带有3线串行接口,SOT23封装 免费样品  
MAX5380 低成本、低功耗、8位DAC,带有2线串行接口,SOT23封装 免费样品  
MAX5381 低成本、低功耗、8位DAC,带有2线串行接口,SOT23封装 免费样品  
MAX5383 低成本、低功耗、8位DAC,带有3线串行接口,SOT23封装 免费样品  
MAX5384 低成本、低功耗、8位DAC,带有3线串行接口,SOT23封装 免费样品  
MAX5400 256抽头SOT-PoT、低漂移数字电位器,SOT23封装 免费样品  
MAX5401 256抽头SOT-PoT、低漂移数字电位器,SOT23封装 免费样品  
MAX5402 256抽头、µPoT™、低漂移数字电位器 免费样品  
MAX5422 256抽头、非易失、SPI接口数字电位器 免费样品  
MAX5427 32抽头、一次性编程、线性变化数字电位器 免费样品  
MAX5427 32抽头、一次性编程、线性变化数字电位器 免费样品  
MAX5428 32抽头、一次性编程、线性变化数字电位器 免费样品  
MAX5429 32抽头、一次性编程、线性变化数字电位器 免费样品  
MAX5437 ±15V、128抽头、低漂移数字电位器 免费样品  
MAX5439 ±15V、128抽头、低漂移数字电位器 免费样品  
MAX5456 立体声音量调节电位器,带有按钮接口 免费样品  
MAX5457 立体声音量调节电位器,带有按钮接口 免费样品  
MAX5460 32抽头FleaPoT™、2线数字电位器 免费样品  
MAX5463 32抽头FleaPoT™、2线数字电位器 免费样品  
MAX5466 32抽头FleaPoT™、2线数字电位器 免费样品  
MAX5477 双路、256抽头、非易失、I²C接口、数字电位器 免费样品  
MAX5481 10位、非易失、线性变化数字电位器 免费样品  
MAX5490 100kΩ精密匹配的电阻分压器,SOT23封装 免费样品  
MAX5491 精密匹配的电阻分压器,SOT23封装 免费样品  
MAX5491 精密匹配的电阻分压器,SOT23封装 免费样品  
MAX5492 10kΩ精密匹配的电阻分压器,SOT23封装 免费样品  
MAX5547 双路、10位、电流输出DAC  
MAX5550 双路、10位、可编程、可提供30mA高输出电流的DAC 免费样品  
MAX5774 32路、14位、电压输出DAC,串行接口 免费样品  
MAX5873 12位、200Msps、高动态性能、双路DAC,CMOS输入 免费样品  
MAX5874 14位、200Msps、高动态性能、双路DAC,CMOS输入 免费样品  
MAX5875 16位、200Msps、高动态性能、双路DAC,CMOS输入 免费样品  
MAX5876 12位、250Msps、高动态性能、双路DAC,LVDS输入 免费样品  
MAX5877 14位、250Msps、高动态性能、双路DAC,LVDS输入 免费样品  
MAX5878 16位、250Msps、高动态性能、双路DAC,LVDS输入 免费样品  
MAX5893 12位、500Msps、插值与调制、双路DAC,CMOS输入 免费样品  
MAX5894 14位、500Msps、插值与调制、双路DAC,CMOS输入 免费样品  
MAX5895 16位、500Msps、插值与调制、双路DAC,CMOS输入 免费样品  
MAX5898 16位、500Msps、插值与调制、双路DAC,交叉LVDS输入 免费样品  
MAX6037 低功耗、固定或可调输出基准,SOT23封装,具有关断功能 免费样品  
MAX6143 高精度电压基准,带有温度传感器 免费样品  
MAX6143 高精度电压基准,带有温度传感器 免费样品  
MAX6160 SOT23封装、低成本、低压差、三端电压基准 免费样品  
MAX6160 SOT23封装、低成本、低压差、三端电压基准 免费样品  
MAX6173 高精度电压基准,带有温度传感器 免费样品  
MAX6173 高精度电压基准,带有温度传感器 免费样品  
MAX6174 高精度电压基准,带有温度传感器 免费样品  
MAX6175 高精度电压基准,带有温度传感器 免费样品  
MAX6176 高精度电压基准,带有温度传感器 免费样品  
MAX6177 高精度电压基准,带有温度传感器 免费样品  
MAX6220 低噪声、高精度+2.5V/+4.096V/+5V电压基准 免费样品  
MAX6220 低噪声、高精度+2.5V/+4.096V/+5V电压基准 免费样品  
MAX6225 低噪声、高精度+2.5V/+4.096V/+5V电压基准 免费样品  
MAX6225 低噪声、高精度+2.5V/+4.096V/+5V电压基准 免费样品  
MAX6241 低噪声、高精度+2.5V/+4.096V/+5V电压基准 免费样品  
MAX6250 低噪声、高精度+2.5V/+4.096V/+5V电压基准 免费样品  
MAX6325 1ppm/°C、低噪声、+2.5V/+4.096V/+5V电压基准 免费样品  
MAX6341 1ppm/°C、低噪声、+2.5V/+4.096V/+5V电压基准 免费样品  
MAX6350 1ppm/°C、低噪声、+2.5V/+4.096V/+5V电压基准 免费样品  
MAX674 +10V精密电压基准 免费样品  
MAX6749 微处理器复位电路,提供电容可调的复位/看门狗超时周期 免费样品  
MAX675 高精度、5V电压基准,取代MAX673 免费样品  
MAX6752 微处理器复位电路,提供电容可调的复位/看门狗超时周期 免费样品  
MAX7375 3引脚硅振荡器 免费样品  
MAX7400 八阶、低通、椭圆函数、开关电容滤波器 免费样品  
MAX7401 八阶、低通、贝塞尔、开关电容滤波器 免费样品  
MAX7403 八阶、低通、椭圆函数、开关电容滤波器 免费样品  
MAX7404 八阶、低通、椭圆函数、开关电容滤波器 免费样品  
MAX7405 八阶、低通、贝塞尔、开关电容滤波器 免费样品  
MAX7407 八阶、低通、椭圆函数、开关电容滤波器 免费样品  
MAX7408 五阶、低通、椭圆函数、开关电容滤波器 免费样品  
MAX7410 五阶、低通、开关电容滤波器 免费样品  
MAX7411 五阶、低通、椭圆函数、开关电容滤波器 免费样品  
MAX7412 五阶、低通、椭圆函数、开关电容滤波器 免费样品  
MAX7413 五阶、低通、开关电容滤波器 免费样品  
MAX7414 五阶、低通、开关电容滤波器 免费样品  
MAX7415 五阶、低通、椭圆函数、开关电容滤波器 免费样品  
MAX7418 五阶、低通、开关电容滤波器 免费样品  
MAX7418 五阶、低通、开关电容滤波器 免费样品  
MAX7419 五阶、低通、开关电容滤波器 免费样品  
MAX7419 五阶、低通、开关电容滤波器 免费样品  
MAX7420 五阶、低通、开关电容滤波器 免费样品  
MAX7421 五阶、低通、开关电容滤波器 免费样品  
MAX7490 双路、通用开关电容滤波器 免费样品  
MAX7490 双路、通用开关电容滤波器 免费样品  
MAX7491 双路、通用开关电容滤波器 免费样品  
MAX9205 10位、总线LVDS串行器 免费样品  
MAX9206 10位总线LVDS解串器 免费样品  
MAX9207 10位、总线LVDS串行器 免费样品  
MAX9208 10位总线LVDS解串器 免费样品  
REF01 +5V、+10V精密电压基准 免费样品  
REF02 +5V、+10V精密电压基准 免费样品  


下一步
EE-Mail 订阅EE-Mail,接收关于您感兴趣的新文档的自动通知。
Download 下载,PDF格式 (107kB)  

© Mar 08, 2011, Maxim Integrated Products, Inc.
The content on this webpage is protected by copyright laws of the United States and of foreign countries. For requests to copy this content, contact us.

APP 4993: Mar 08, 2011
设计指南4993, AN4993, AN 4993, APP4993, Appnote4993, Appnote 4993