应用笔记4713

通过适当的电源旁路滤波消除噪声

Walter Chen, Principle Member of the Technical Staff, Applications

摘要:对于一个敏感的单电源供电模拟系统,如果没有有效的旁路电路来消除噪声,系统性能将大打折扣。本应用笔记针对这一问题进行剖析,以克服这一技术屏障。

系统设计的最后阶段会把数字功能和模拟功能组合在一起,这时,你会发现模拟电路的性能(如音频放大的效果)由于数字干扰而下降。即使采用了常规的防范措施(如模拟地与数字地的隔离、屏蔽)也不能完全避免噪声问题。这种噪声干扰可以追溯到电源耦合,有时即使采用独立的线性稳压器供电,同样也会存在电源干扰。
对于高增益音频放大器,60Hz交流电源噪声是传统设计中必需面对的问题,电源抑制比(PSRR)既是针对这一问题定义的一项规格。PSRR定义为:
Equation 1.
PSRR指标测试中还包含除60Hz以外的任何干扰频率,电源耦合的干扰程度可以通过受影响系统的PSRR以及干扰系统的电源噪声进行评估。
以下示例说明如何通过适当的电源旁路滤波来消除噪声干扰,图1所示为VoIP系统的功能框图,由音频放大器提供语音放大,一个数字时钟用于时间显示。VoIP通过以太网供电。MAX7221 LED驱动器驱动数字时钟显示。把音频电路和数字时钟电路混合在一起后,在几英尺远的地方都可以从扬声器听到高频噪音。
图1. VoIP系统电源
图1. VoIP系统电源。
在MAX7221的5V稳压电源上,数字噪声峰-峰值可达300mV,噪声频率大约为12kHz。这种噪声是由于4个LED复用驱动产生的。注意,如果音频和LED驱动电路采用单独电源供电,该噪音即可消失。在音频系统的12V输入电源上只有非常低的噪声。
在音频和数字电源分别采用一个三阶LCπ型低通滤波器(LPF),如图2所示。选择1mH电感,角频率设置为1kHz,则电容计算公式如下:
Equation 2.
采用电源旁路电路后,高宽噪音即刻消失。
图2. 附加LPF滤波器
图2. 附加LPF滤波器。
同样,电源耦合测量和电源旁路滤波也可应用到射频(RF)或图像采集系统。在射频系统中,发射端噪声往往会降低接收端性能;在图像采集系统中,CMOS摄像头传感器采用模拟电源供电,它对数字噪声非常敏感。设计时应采用旁路滤波,以消除发射电路或摄像头相关的数字电路所产生的噪声。


相关型号
MAX7221 串行接口、8位、LED显示驱动器 免费样品  


下一步
EE-Mail 订阅EE-Mail,接收关于您感兴趣的新文档的自动通知。

© Apr 01, 2013, Maxim Integrated Products, Inc.
The content on this webpage is protected by copyright laws of the United States and of foreign countries. For requests to copy this content, contact us.

APP 4713: Apr 01, 2013
应用笔记4713, AN4713, AN 4713, APP4713, Appnote4713, Appnote 4713