
Keywords: buck boost led driver, buckboost, led driver
Related Parts


Designing a BuckBoost LED Driver Using the MAX16834
© Aug 18, 2009, Maxim Integrated Products, Inc.


Abstract: This reference design is for a buckboost LED driver. The MAX16834 currentmode highbrightness LED driver is featured, and the MAX16834 EV (evaluation) kit is used to implement the design. The application note shows the design specifications, schematic, bill of materials (BOM), and performance data.
In this reference design a
buckboost converter (inputvoltage referenced) drives 350mA through 4 white LEDs (WLEDs) from a 7V to 18V DC supply. The
MAX16834 currentmode highbrightness (HB) LED driver is featured.
LED Driver Specifications
 Input voltage: 7V to 18V
 Input voltage ripple: 100mV_{PP}
 LED current: 350mA
 LED current ripple: 5% (max)
 LED forward voltage: 3.5V at 350mA
 Number of LEDs: 4 (max)
 Output overvoltage protection: 17.2V
Inputs
 V_{IN} PGND: input supply voltage
 PWMDIM, SGND: input for PWM dimming
Outputs
 LED+: connect anode of LEDs to LED+
 LED: connect cathode of LEDs to LED
More detailed image (PDF, 60.64kB)
Figure 1. The MAX16834EVKIT was used to implement this reference design.
Figure 2. Schematic of the LED driver.
Component List* (Bill of Materials, BOM)
Designator 
Quantity 
Description 
C1, C7, C8 
3 
2.2µF, 25V X7R, ceramic capacitor (0805) 
C2 
1 
2.2µF, 25V X7R, ceramic capacitor (0805) 
C11 
1 
10µF, 16V X7R, ceramic capacitor (1206) 
C3, C12, C14, C15 
4 
0.1µF, 16V X7R, ceramic capacitor (0603) 
C13 
1 
1.5nF, 10V X7R, ceramic capacitor (0603) 
C16, C18 
2 
1nF, 10V X7R, ceramic capacitor (0603) 
Cx 
1 
100pF, 10V X7R, ceramic capacitor (0603) 
D1 
1 
MAZS0680ML, 6.8V Zener diode, SSMINI 
D2 
1 
B160B, 1A, 60V Schottky diode 
L1 
1 
MMS1038223ML, 22µH, 2.34A inductor 
N1, N2 
2 
SI2318DS, 40V, 3A, nchannel MOSFET (SOT23) 
R1 
1 
34kΩ ±1% resistor (0402) 
R2 
1 
9.53kΩ ±1% resistor (0402) 
R7 
1 
2.2kΩ ±1% resistor (0805) 
R5 
1 
0.56kΩ ±1% resistor (0803) 
R9 
1 
0.15Ω ±1% resistor (0603) 
R10 
1 
310Ω ±1% resistor (0402) 
R11 
1 
243kΩ ±1% resistor (0402) 
R12 
1 
22.1kΩ ±1% resistor (0402) 
R13 
1 
13.1kΩ ±1% resistor (0402) 
R14 
1 
10kΩ ±% resistor (0402) 
R15 
1 
11kΩ ±1% resistor (0402) 
R16 
1 
23.2kΩ ±1% resistor (0402) 
R17 
1 
26.7kΩ ±1% resistor (0402) 
U1 
1 
MAX16834ATP+ 20pin, 4mm x 4mm TQFNEP 
*Component designations match the MAX16834 EV kit board.
Detailed Description
Connecting the negative terminal of a boost converter's output to the inputpositive supply results in a buckboost converter (inputvoltage referenced).
In this design a buckboost converter (inputvoltage referenced) drives 350mA through 4 white LEDs (WLEDs) from a 7V to 18V DC supply. (Each WLED has a forward voltage drop of 3.5V at 350mA.) The MAX16834
HB LED driver with integrated peak
currentmode controller is used to design the converter, which operates in
CCM (continuous conduction mode) at 495kHz switching frequency. The switching frequency is configured with the 11kΩ R15 resistor.
The MAX16834 controls the peak of the inductor current to achieve 350mA LED current under different inputoutput voltage conditions. The voltage across the LED currentsense resistor is sensed and then amplified by a factor of 9.9 internally. This results in a smaller value of
sense resistor, thereby increasing the efficiency. This amplified voltage is then compared with the reference voltage set by resistors R16 and R17. The error is then amplified by the
transconductance amplifier with
GM = 500µS. This results in a control voltage across the COMP pin; this voltage sets the reference to the current loop. The peak of the voltage across the inductor currentsense resistor, R9, is tracked to this voltage.
Converter Design
The parameters for the converter design follow:
 Input supplyvoltage range: 7V to 18V
 Input voltage ripple: 100mV_{PP}
 Maximum LED forward voltage: 14V (which is 4 x 3.5V)
 LED current: 350mA
 LED current ripple: 5% (max)
 Switching frequency: 455kHz
Calculate the maximum duty cycle for N2 from Equation 1:
Where V
_{LEDMAX} is the maximum LED voltage; V
_{INMIN} is the minimum input voltage; V
_{D} is the diode voltage drop; and V
_{DS} is the average voltage across the FET when it is turned on.
In this application, D
_{MAX} is 0.69.
Selecting the Inductor (L1)
To choose an inductor, both the inductor value and its peak current value must be known. Calculate the peak inductor current with Equation 2:
Where I
_{LAVG} is the average inductor current. ΔI
_{L} is the inductor current ripple, specified as the percentage of average inductor current:
Allow 30% ΔI
_{L}. After substituting the known values, we get:
Calculate the minimum inductance with Equation 5:
Where f
_{SW} is the switching frequency. Allowing 20% tolerance results in L
_{MIN} = 17µH. Here a 22µH inductor is chosen.
Switch CurrentSense Resistor (R9)
Under normal operating conditions the maximum voltage across the switch currentsense resistor must not be more than 250mV. If the senseresistor voltage reaches 300mV (typ), then the converter is turned off. The voltage across R9 determines the ON pulse width of the switching cycle. Internal leadingedge blanking is provided to prevent premature turnoff of the switching MOSFET in a switching cycle. Calculate R9 with Equation 6:
Therefore, R9 = 0.133Ω. Here a 0.15Ω resistor is chosen for R9.
Slope Compensation Capacitor (C13)
Peak currentmode control is known to be unstable at duty ratios more than 50% in a CCM boostconverter design. Proper slope compensation is, therefore, required to eliminate the instability caused by the subharmonic oscillations. The MAX16834 uses an internal ramp
generator for slope compensation. The ramp resets at the beginning of each switching cycle and slews at the rate programmed by the external capacitor, C13. An internal 100µA current
source charges this capacitor. This voltage is added to the voltage across R9 internally.
Calculate the value of C13 with the Equation 7:
Where V
_{SLOPE} is:
Therefore from Equations 7 and 8, C13 = 1.57nF. Here a 1.5nF capacitor is chosen.
LED CurrentSense Resistor (R5)
Calculate R5 with the Equation 9:
For this application V
_{REFI} is selected as 1.94V. Therefore, R5 = 0.56Ω.
Filter Capacitors
Calculate the value of output capacitor C
_{OUT} (the
parallel combination of C7 and C8) with Equation 10:
Where ΔV
_{LED} is the maximum peaktopeak boost outputvoltage ripple. This value depends on the maximum current ripple and the dynamic
impedance of LEDs at the rated current. To prolong LED life and preserve chromaticity, the LED current ripple should be kept below 5% of the average current. In this application, C
_{OUT} is calculated to be 3µF. Accordingly, two capacitors of 2.2µF/50V each are chosen for C7 and C8.
Calculate the input capacitor value (the parallel combination of C1, C2) with Equation 11:
Where ΔV
_{IN} is the peaktopeak input voltage ripple.
For a 100mV ΔV
_{IN}, C
_{IN} is 1.9µF. Therefore, C1 is selected as 2.2µF/25V and C2 as 1.1µF/25V.
Feedback Compensation
A buckboost converter, powercircuit
transfer function has a righthalfplane zero calculated with Equation 12:
For this application, f
_{RHPZ} occurs at 37.8kHz. To keep the feedback stable with sufficient phase margin, the total loop gain should cross 0dB before onefifth of the RHP zero frequency at 20dB/decade. Thus the
crossover frequency, f
_{C}, is calculated to be 7.56kHz. The output capacitor and effective output impedance offered by the load create a pole at:
Where R
_{O} is the effective impedance contributed by the load, and is calculated as:
From Equation 14, f
_{P1} = 4.7kHz.
Now the compensation components, R10 and C12, must be selected. They must contribute a zero at the pole frequency f
_{P1}, and set the loop gain at f
_{P1} so that loop gain crosses 0dB at f
_{C}.
Calculate R10 with Equation 15:
From Equation 15, R10 = 341Ω. Here a 301Ω resistor is chosen for R10; GM is the gain of the internal transconductance amplifier.
Accordingly, C12 is calculated as:
From Equation 16, C12 = 0.11µF. Here a 0.1µF capacitor is chosen.
Digital PWM Dimming
The MAX16834 has an internal PWM dimming MOSFET driver. PWM dimming is achieved by applying a 1.5V to 5V logichigh PWM signal with a frequency ranging from DC to 20kHz. The
brightness of the LED can be varied by changing the duty ratio of the PWM signal.
The NDRV driver and the output of the transconductance amplifier are controlled by the PWM signal. When the PWM signal is high, then NDRV is enabled and the output of the transconductance amplifier is connected to the COMP pin. When the signal is low, NDRV is disabled and the output of the amplifier is disconnected. The COMP pin is connected to the negative input of the PWM
comparator with
CMOS inputs which draw negligible current from the compensation capacitor, C12. Thus the charge on C12 is preserved, thereby retaining the state when PWM was on. Once the signal becomes high, NDRV is enabled and the output of the amplifier is connected to the COMP pin. This establishes a steadystate operation quickly.
OpenLED Protection
The output of the boost converter can increase to high voltages, if it is operated without any load or if there is an openLED fault. The converter can be disabled at a desired output voltage, which can be configured with the help of R11 and R12. The midpoint of R11 and R12 is connected to the
OVP pin of the IC. The converter is disabled if the voltage across this pin reaches 1.435V (typ). In this application, R11 and R12 are configured to activate openLED protection once the output voltage reaches 17.2V.
Implementation of the Buck Boost Converter on the MAX16834 EV Kit
The MAX16834 EV kit is assembled as a boost converter. The kit board can be reconfigured in buckboost mode by removing and adding the following components:
 Remove resistors R4 and R8.
 Install a 0Ω resistor in place of R3.
 Install the components mentioned in the BOM.
Circuit Waveforms and Performance Data
Figure 3. Gate driver voltage of N2.
Figure 4. Drain voltage of N2.
Figure 5. Switch current waveform of N2.
Figure 6. LED voltage.
Figure 7. LED current waveform at 50% PWM dimming.
Figure 8. LED current waveform at 90% PWM dimming.
Figure 9. LED current waveform at 10% PWM dimming.
PowerUp Procedure
 Connect the string of 4 WLEDs with anode connected to the LED+ pad and cathode to the LED pad.
 Connect the input powersupply input across the V_{IN} and PGND pads.
 Apply a 1.5V to 5V logichigh PWM signal with a frequency ranging from 100Hz to 200kHz across the PWMDIM and SGND pads.
 To vary the brightness of LEDs, vary the PWM signal duty ratio.
Related Parts 
MAX16834 
HighPower LED Driver with Integrated HighSide LED Current Sense and PWM Dimming MOSFET Driver 
Free Samples

The content on this webpage is protected by copyright laws of the United States and of foreign countries. For requests to copy this content, contact us.
APP 4452: Aug 18, 2009
REFERENCE SCHEMATIC 4452,
AN4452,
AN 4452,
APP4452,
Appnote4452,
Appnote 4452
