

A Maxim Integrated Products Brand

73S1215F, 73S1217F

USB CCID Guidelines

September 14, 2009
Rev. 2.10

AN_12xxF_028
Library Rev. 4.00(DFU)

Code/Firmware Rev. TSC12xx.2.10

73S1215F, 73S1217F USB CCID Guidelines AN_12xxF_028

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit
patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabr iel Dr ive, Sunnyvale, CA 94086 408- 737-7600
 2010 Maxim Integrated Products Maxim is a registered trademark of Maxim Integrated Products.

AN_12xxF_028 73S1215F, 73S1217F USB CCID Guidelines

Rev. 2.10 3

Table of Contents

Figures ... 4

Tables ... 4

1 Introduction ... 5

2 Overview .. 5

3 CCID Application Firmware.. 6
3.1 CCID Application Build Environments .. 6
3.2 Suspend and Resume Processing ... 9
3.3 Endpoint 0 Processing .. 9
3.4 Card Slot Status Processing via (interrupt) Endpoint 2 .. 9
3.5 CCID Command Processing ... 9
3.6 Command Error Codes ... 10
3.7 Mechanical Features Porcessing .. 10
3.8 Escape Command Processing ... 10

4 Driver Selection and Installation ... 11

5 Smart Card Application .. 12
5.1 Multiple Slot Operation ... 12
5.2 Sending Escape Commands .. 13

5.2.1 EscapeCommand – LCD Control: 0x31 .. 16
5.2.2 EscapeCommand – KeyPad Control:0x32 .. 16
5.2.3 Escape Command – EMV Level 1 Test Control: 0x33 .. 17
5.2.4 EscapeCommand – LED Control: 0x34 ... 23
5.2.5 EscapeCommand – DFU Detach: 0x41 .. 23
5.2.6 EscapeCommand – Serial Interface Control: 0x50 ... 24

6 Acronyms... 25

7 Related Documentation .. 26

8 Contact Information .. 26

Revision History .. 27

73S1215F, 73S1217F USB CCID Guidelines AN_12xxF_028

4 Rev. 2.10

Figures
Figure 1: Overview of the 73S12xx CCID Software .. 5
Figure 2: Add New Hardware Wizard Showing Microsoft and TSC CCID Drivers 11
Figure 3: Add EMV Test Mode .. 19
Figure 4: MasterCard Loopback Test ... 20
Figure 5: VISA-1 Loopback Test ... 21
Figure 6: VISA-2 Loopback Test ... 22

Tables
Table 1: CCID Firmware Source Code Modules ... 7
Table 2: CCID_SET_DEVICE_MODE Device Request ... 9
Table 3: Windows Smart Card APIs used in the SmartCard Sample Application 12
Table 4: Extended Features .. 14

AN_12xxF_028 73S1215F, 73S1217F USB CCID Guidelines

Rev. 2.10 5

1 Introduction
This document contains guidelines for the use of the TSC73S12xxF in a USB environment, particularly
Microsoft® Windows XP® and PC/SC. The intent of this application note is to aid customers in the
development of Smart Card Reader applications specific to their environment. It is not intended as a
reference document for the software mentioned in this document.

2 Overview
Figure 1 shows an overview of the 73S12xxCCID Software. TSC has provided an embedded CCID
firmware application that is compliant with the USB CCID Class Specification of the USB Device Class
Specification for USB Chip/Smart Card Interface Devices Specification, Revision 1.1. The firmware has
been developed on the TSC 73S12xxF Evaluation Board. The firmware is provided in the form of ANSI C
source code and Keil uVision2/3 project files so that the customer may use them to modify and enhance
the application to meet their requirements.

In the Windows environment, the customer may employ either the Microsoft-supplied CCID USB client
driver or the TSC enhanced CCID USB client driver. The TSC driver offers additional hardware support
for multiple card slots, LCD operation and PIN pad input.

Figure 1: Overview of the 73S12xx CCID Software

On the Windows side, the customer develops application software using the Windows Smart Card API to
access/control the reader.

73S1215F, 73S1217F USB CCID Guidelines AN_12xxF_028

6 Rev. 2.10

3 CCID Application Firmware
Once the 73S12xxF Development Kit is installed, the CCID Application Firmware is contained in the CCID
USB folder. Refer to the 73S12xxF Software User’s Guide description of the contents of this installation
disk. The firmware is delivered in the form of source code and Keil uVision (.uv2 or .uv3) project files.
Customers can modify and build this software and download .hex files to the 73S12xxF Evaluation or
Demo Board as detailed in the 73S12xxF Software User’s Guide, the 73S12xxF Evaluation Board User’s
Guide, and the Teridian Flash Programming Tool.

3.1 CCID Application Build Environments
Starting from revision 2.00, the CCID Application with the DFU Boot Loader feature was partitioned to
reside starting at address 0x1802 instead of the previous address of 0x0000. The CD ROM version 2.00
built for CCID USB version 2.00 has two distinct flavors: with the DFU Boot Loader and without the DFU
Boot Loader (same as previous releases). Prior CCID projects (without the Boot Loader) remain the
same. The CCID+DFU project file setup to accommodate the DFU Boot Loader feature has the following
changes:

1. The Application starting address is set at 0x1802 as shown below:

2. The Interrupt Vector address is also set to start at 0x1802 as shown below. The DFU directive

(circled in black below) is used to specifically select the DFU feature into the build. The LEDMGT
directive (circled in red below) indicates the new LED0 control feature as described in Section 5.2.4.

AN_12xxF_028 73S1215F, 73S1217F USB CCID Guidelines

Rev. 2.10 7

3. The LAPI and HAPI libraries are built specifically for DFU to stay clear of the DFU Flash area. Thus,
the CCID+DFU project file is also setup to link to the DFU flavored libraries as shown below:

The CCID firmware application is divided into functional source code modules as illustrated in Table 1.
Customers are encouraged to browse the source files to better understand how they work. Special care
should be taken when modifying these source files. Customers are discouraged from modifying code
related to the USB CCID class processing found in ccidusb.c and ccidprot.c. Specific parts of the code
that may be customized are identified in the following sections.

Table 1: CCID Firmware Source Code Modules

Functional Area Module

main() and init function ccidtsc.c
CCID USB layer ccidusb.c
CCID Protocol Layer ccidprot.c
Enhanced CCID support for pinpad and LCD ccidhid.c
Utility functions ccidutil.c

73S1215F, 73S1217F USB CCID Guidelines AN_12xxF_028

8 Rev. 2.10

The USB CCID Class Specification specifies a USB CCID class descriptor, which is used to present all
Smart Card Reader features to the host computer. The CCID firmware application employs the TSC ICC
HAPI (detailed in the 73S12xxF Smart Card Terminal Controller Family Software User’s Guide) to provide
Smart card functionality. The Smart Card HAPI layer is multi-standard compliant and encapsulates a
great deal of functionality. This is reflected in the contents of the USB CCID class descriptor as defined in
ccidusb.c. The descriptor contents specify, among other things, Short and Extended APDU level of
transfer, automatic voltage selection, automatic protocol parameters selection and automatic clock
frequency and data rate change.

USB communications are achieved with the use of the USB LAPI functions as described in detail in the
73S12xxF Smart Card Terminal Controller Family Software User’s Guide. The CCID application is a
single threaded C program whose main() function is placed in ccidtsc.c. The main() function contains a
do..while(1) loop which polls the various external events and performs the necessary processing. First,
the main loop calls the USB_OUT_1() LAPI to check for data reception on the CCID bulk command pipe.
If a CCID command has been received this is processed in CCID_CommandDispatch() as described in
Section 3.4. If no data is present on the bulk pipe as indicated by USB_OUT1() returns RX_PENDING.
The firmware then checks for the following:

• The status of the EP0 control pipe using CheckEP0Status() as described in Section 3.2.
• The status of ICC slots using CheckCardStatus() as described in Section 3.3.
• The status of USB state for suspend/reset/resume as described in Section 3.1.

AN_12xxF_028 73S1215F, 73S1217F USB CCID Guidelines

Rev. 2.10 9

3.2 Suspend and Resume Processing
The functions uReset(), uSuspend() and uResume() in ccidusb.c are callback functions for the USB LAPI
that are set up during initialization with a call to USB_Init(). The functions are called by the LAPI
subsystem when USB suspend and resume conditions occur on the bus. In the CCID application
firmware these functions are used to power down/up the ICC and PIN pad to meet USB suspend power
requirements.

The customer application may use these callback functions to power down/up additional components
and/or to perform additional suspend/resume processing.

3.3 Endpoint 0 Processing
USB device requests are made over the control pipe on endpoint 0. The status of EP0 is checked by
calling the LAPI USB_Status() from within the CheckEP0Status() function in ccidtsc.c LAPI returns an
enumerated value indicating what type of request, if any, has been received on the control pipe. Refer to
the 73S12xxF Smart Card Terminal Controller Family Software User’s Guide for further information on the
USB_Status() LAPI.

The CheckEP0Status() function handles both class device requests (ABORT) and TSC vendor specific
device requests detailed below. The customer should not need to modify any of this code and the
following is provided for information only.

The CCID_SET_DEVICE_MODE device request is used to set the device mode to either Microsoft CCID
mode or TSC enhanced CCID mode. The device request control bytes are defined in Table 2. The
firmware sets a global variable called gFirmwareMode. This global is used throughout the firmware to
control access to multiple slots and enhanced features. In Microsoft CCID mode (default firmware mode),
only one slot (slot 0) is supported and all of the enhanced features such as LCD and PIN pad are
disabled.

Table 2: CCID_SET_DEVICE_MODE Device Request

bmRerquestType bRequest wValue wIndex wLength Data
01000000 CCID_SET_DEVICE_MODE (0) Device Mode* 0 0 none

* 0 = Microsoft CCID mode, 1 = TSC Enhanced CCID mode

3.4 Card Slot Status Processing via (interrupt) Endpoint 2
Thestatus of the card slots is checked by calling the ICC_Status() HAPI from within the
CheckCardStatus() function in ccidtsc.c. The USB CCID Class Specification describes how the host
computer is notified of card slot insertions and removals and the customer should not need to modify this
code.

3.5 CCID Command Processing
CCID bulk command processing is performed in the CCID_CommandDispatch function contained in
ccidusb.c. This function contains a large switch statement with cases for all of the CCID Bulk command-
response pairs detailed in the USB CCID Class Specification. This source module also contains all the
message-specific processing, including accesses to the ICC HAPI. The customer is strongly discouraged
from modifying any of this code, since this code has been thoroughly tested using the Microsoft HCT and
DTM test tools and is standard-compliant. However the customer may modify the Mechanical and Escape
Command processing as detailed below.

73S1215F, 73S1217F USB CCID Guidelines AN_12xxF_028

10 Rev. 2.10

3.6 Command Error Codes
CCID bulk command is processed and executed. An error code is returned for each command according
to the USB CCID Class Specification. Teridian added a few more error codes, mostly following an
escape command. The error codes provided in the accompanied CCID source code are defined as
follows:

// the following #defines are used on the bError byte
#define CMD_ABORTED 0xff
#define ICC_MUTE 0xfe
#define HW_ERROR 0xfb
#define BAD_ATR_TS 0xf8
#define BAD_ATR_TCK 0xf7
#define UNKNOWN_ESC_CMD 0xff
#define KEYPAD_TIMEOUT 0xf9

3.7 Mechanical Features Porcessing
Since the 73S12xxF evaluation board does not have any mechanical features, no specific mechanical
processing is performed in the CCID firmware. Customers who wish to develop readers with mechanical
features are directed to the CCID_Mechanical() function in ccidusb.c. The decoding software for this
function has switch cases for LOCK_CARD and EJECT_CARD and has provided stub functions
(LockCard() and EjectCard()) for these two cases. The stub functions simply return success and the
customer should place any mechanical processing code in these functions.

The USB Device Class Specification for USB Chip/Smart Card Interface Devices Specification, Revision
1.1 only supports LOCK_CARD and EJECT_CARD, although other mechanical functions are defined.
The customer should add any other required mechanical functions to the switch statement contained in
CCID_Mechanical() and add handler functions as required.

3.8 Escape Command Processing
The USB CCID Class Specification provides the PC_to_RDR_Escape bulk command to allow card reader
vendors to send and receive custom data between the host computer and reader. The CCID application
firmware provides a handler function in ccidusb.c called CCID_Escape(). This handler can be used to
implement additional customization features such as LCD and Keypad as defined outside the scope of
CCID specification. Any customer-specific escape processing should be added to this handler function.
The application software may send and receive escape data via both the Microsoft and TSC driver as
described in Section 5.2.

AN_12xxF_028 73S1215F, 73S1217F USB CCID Guidelines

Rev. 2.10 11

4 Driver Selection and Installation
When the 73S12xxF evaluation board containing the CCID firmware application is plugged into the USB
port of a Windows host PC, the Windows Add New Hardware Wizard is launched. The wizard prompts
the user to install a driver for the newly found hardware. The CCID application firmware operates with
both the standard Microsoft CCD driver, usbccid.sys, and the TSC enhanced CCID driver, ccidtsc.sys.
The software installation disk contains Windows .inf file for both of these drivers. If the user browses to
the directory containing the .inf files, the wizard displays the dialog shown in Figure 2. The first choice,
highlighted is the ccidtsc.sys driver; the second choice is Microsoft’s usbccid.sys.

Figure 2: Add New Hardware Wizard Showing Microsoft and TSC CCID Drivers

The features provided by Microsoft’s usbccid.sys are detailed fully in Microsoft Class Drivers for USB
CCID Smart Cards (http://www.microsoft.com/whdc/device/input/smartcard/USB_CCID.mspx).

The TSC enhanced CCID driver provides CCID compliant APDU level transfer of data and in addition
addresses many of the shortcomings of the Microsoft driver, specifically:

• Support for multiple reader slots. See Section 5.1.
• PIN pad support. See Section 5.2.
• LCD support. See Section 5.2.
• Vendor/device-specific string name support in the device manager.
• Support for mechanical features.
• DFU Device Class (0xFE)

Once the TSC enhanced CCID driver is loaded it issues a CCID_SET_DEVICE_MODE device request to
enable the enhanced features in the firmware.

The TSC enhanced CCID driver uses the following registry settings, set from the ccidtsc.inf installation file:

• HKLM,System\CurrentControlSet\Services\ccidtsc\Parameters,SelectSuspendEnable

This setting is used to control whether the driver attempts to selectively suspend the card reader in
the case of 3 seconds of bus traffic inactivity. This should be left at the default state of 0, disabled,
until the hardware supports remote wakeup capability.

• HKLM,System\CurrentControlSet\Services\ccidtsc\Parameters,AbortEnable
This setting is used to control whether the driver will activate the CCID class ABORT sequence
specified in the USB Device Class Specification in the event of bulk command/response timeout. The
ccidtsc.inf file is delivered with ABORT disabled for development purposes. Once the customer has
developed a stable firmware application this feature may be enabled.

http://www.microsoft.com/whdc/device/input/smartcard/USB_CCID.mspx�

73S1215F, 73S1217F USB CCID Guidelines AN_12xxF_028

12 Rev. 2.10

5 Smart Card Application
A Windows Smart Card Application uses the Win32 Smart Card to access the TSC 73S12xxF based
reader. The APIs operate with both the Microsoft and the TSC CCID drivers in an identical manner. For
a full Windows Smart Card API reference see the MSDN Library – April 2005. Platform SDK: Smart Card.

The application program first establishes a context to the Smart Card Resource Manager using the API
ScardEstablishContext(). Then the ScardConnect() API is called to open a handle on an individual smart
card basis. This handle is then used for subsequent operations on the Smart Card, such as power on/off,
data transmission and reception and protocol selection.

The TSC 73S12xx Software Installation disk contains a sample Smart Card application called SmartCard,
which demonstrates the use of the lower-level Windows Smart Card APIs. The application uses the APIs
in Table 3 to demonstrate card/device related access. Refer to the code for example uses of the APIs.

Table 3: Windows Smart Card APIs used in the SmartCard Sample Application

API Description
ScardEstablishContext Establishes the resource manager context.

ScardListReaders Receives a list of Smart Card Readers attached to the system.
SCardConnect Establishes a connection between the application and a smart card

contained by a specific reader.
SCardReconnect Re-establishes an existing connection between the calling application and a

smart card.
ScardTransmit Sends a service request to the smart card and expects to receive data back

from the card. Used to send ADPUs.
SCardControl Used for direct control of the reader via IOCTL method.
ScardGetAttrib Used to get the current reader attributes for the given handle e.g. ATR

string, IFSD, data rates, vendor strings.
ScardStatus Provides the current status of a smart card in a reader.

ScardDisconnect Terminates a connection previously opened between the calling application
and a smart card in the target reader.

ScardReleaseContext Releases the resource manager context.

The enhanced TSC features such as multiple card slots, PIN pad and LCD also use the handle returned
from ScardConnect() API. Multiple slot operation is achieved as described in Section 5.1 of this
application note. PIN pad and LCD services are provided through a TSC-supplied DLL. The application
links to this DLL and calls the DLL services, passing in the Smart Card handle as a parameter. The
services are detailed in below sections of this application note. It is noted that these enhanced services
are provided by the TSC enhanced CCID driver, ccidtsc-*.sys. If the Microsoft CCID driver is installed,
these enhanced function calls will fail.

The CCID application firmware will automatically control the LED0 indicator. Whenever the card in slot 0
is activated with a valid ATR, the LED0 indicator will automatically turn on solidly. Whenever the card is
deactivated (by card removal or card deactivation via command or fault), the LED0 will be turned off. The
LED ESC command can manually control the LED0, but the firmware will always override the LED ESC
control setting upon card activation or deactivation.

5.1 Multiple Slot Operation
When a reader is selected for the first time, the application program retrieves slot information from the
driver to determine the number of slots the selected reader supports. When changing active slot on a
multiple-slot reader, the application program calls the ScardControl() API with the IOCTL code set to

AN_12xxF_028 73S1215F, 73S1217F USB CCID Guidelines

Rev. 2.10 13

IOCTL_CCIDTSC_SELECT_SLOT. The new slot number is contained in the first member of the I/O
buffer byte array and is a zero-based slot index. A smart card should be already inserted in the new slot,
otherwise the TSC enhanced CCID driver will fail the API. After a successful slot change, the application
program is ready to communicate normally with the smart card in the new slot.

When the user clicks on the Connect button, the application program calls ScardConnect() API to power
on the smart card. From this point on, all subsequent card operations refer to the card in the new slot.

Two additional IOCTL options are provided for slot management. They are
IOCTL_CCIDTSC_GET_NO_SLOTS and IOCTL_CCIDTSC_GET_SELECTED_SLOT. While initializing
for a selected reader, the application program uses these options to retrieve the number of slots available
in the reader, and the currently selected slot. The application program calls these options in the same
manner using the ScardControl() API. The return value is returned in the first byte of the I/O buffer.
Example use of these IOCTL options is demonstrated in the btnSelecteReader_Click() function in the
SmartCard sample application.

5.2 Sending Escape Commands
In order to send/receive escape commands to/from the reader the application programmer calls the
ScardControl() API with the IOCTL set to IOCTL_CCID_ESCAPE. The ScardControl() API has transmit
and receive buffers to send and receive data. See the MSDN Library – April 2005. Platform SDK: Smart
Card for a full definition of the use of this API. It is noted that this IOCTL may be used with both the
Microsoft CCID driver and the TSC enhanced CCID driver. However, for the Microsoft driver, this feature
must be enabled via a registry setting as detailed in Microsoft Class Drivers for USB CCID Smart Cards
(http://www.microsoft.com/whdc/device/input/smartcard/USB_CCID.mspx).

The current version of CCID firmware application support escape commands in the format as described in
table below. The supported extended features are LCD and PinPad controls but more can be added
and/or modified:

bMessageType dwLength bSlot bSeq RFU T1B1B2B3B4 ..abData
6Bh xxxxxxxx xx xx xxxxxx n1...nx

1Byte 4Bytes 1 Byte 1 Byte 3 Bytes 1 - xBytes
Offset = 0 Offset = 1 Offset = 5 Offset = 6 Offset = 7 Offset = 10

Since these extended features are mostly outside of the Smart Card functions; thus, references to smart
card’s slot number is typically RFU. These additional features are supported as defined in T1 column
below. The Parameter field (B1B2B3) is a raw text format that can be used to control the specific non-
smart card features.

http://www.microsoft.com/whdc/device/input/smartcard/USB_CCID.mspx�

73S1215F, 73S1217F USB CCID Guidelines AN_12xxF_028

14 Rev. 2.10

 Table 4 defines the extended features.

Table 4: Extended Features

T1 B1 B2 B3 B4 Any Other Bytes
1Byte 1Byte 1Byte 1Byte 1Byte Up to 255 bytes
 0x00 = CLEAR 0x00 = RFU 0x00 = RFU 0x00 = RFU
0x31 0x01 = POSX 0x00 = RFU rc – r=Row/c=Column 0x00 = RFU LCD Control
 0x02 = DISPLAY 0x00 = RFU i - Index 0x00 = RFU
 0x03 = WRITE 0x00 = RFU 0x00 = RFU l = length
 0x00 = Config WaitTime rc – r=Row/c=col 0 - RFU
0x32 0x01 = KeyWait WaitTime rc – r=Row/c=col 0 – RFU KeyPad Control
 0x02 = WaitKeys WaitTime # Keys 0 – RFU
 0xX1 = ISO Mode

0xX0 = EMV Mode
RFU RFU RFU

0x33 0x00 = not a test mode
0x10 = MasterCard®
(Cetecom lab)
0x20 = VISA® (FIME,
RFI labs)
0x40 = VISA (ICTK lab)

RFU RFU RFU

EMV Level 1 Test
Automation

0x34 0x00 = Turn off LED0

0x01 = Turn on LED0

0x02 = Enable LED0
blinking.

RFU

Blinking rate,
in 100 ms.
Slowest rate is
25.5 seconds.

RFU

Brightness:
0x01 = Dim (2mA)
0x02 = Normal (4mA)
0x03 = Bright (10mA)
Brightness (same as
above)

RFU

RFU

RFU

LED0 turned off.

LED0 is turned
on at this
brightness.

LED0 will be
blinking at this
rate and this
brightness until a
card is removed
or deactivated
and LED0 will be
turned off.
When a card is
activated, the
LED0 will turn on
solidly.

AN_12xxF_028 73S1215F, 73S1217F USB CCID Guidelines

Rev. 2.10 15

T1 B1 B2 B3 B4 Any Other Bytes

0x41 RFU RFU RFU RFU DFU Detach
 0x00 = Config 0xYy where:

Y = Baud, *
y = NoRetries

WaitTime

This time specifies a
number in seconds that
has passed before a
retry is attempted.

TxRxBuffSize

Maximum Buffer
size.
Note:This field
is RFU for now
due to limited
RAM space.
CCIDUSB FW
defines the
maximum
Rx/Tx size for
Serial Interface
according to
available RAM
space.

Assuming 8 Data
bit, No Parity, No

Xon/off.

 0x01 = Transmit TxSize RFU RFU Data
0x50 0x02 = Receive RFU RxSize RFU
 0x03 = Transmit then

Receive
TxSize RxSize RFU Data

 0x04 = Receive then
Transmit

TxSize RxSize RFU
Data

* Valid values (Y) for baud rates at CPU CLK=24MHz are specified as follows:

0x3y = 4800
0x4y = 9600
0x5y = 14400
0x6y = 19200
0x7y = 28800
0x9y = 57600
0xBy = 125000
0xCy = 250000
0xDy = 375000

Any other values of Y will revert to default baud of 9600.

Value (y) at CPU CLK=24MHz for the number of retries can be anything up to 15 (0xYF). An error code
will be returned when the number of retries is exhausted.

When the command is executed successfully, the device’s response will be as follows:

bMessageType dwLength bSlot bSeq bStatus bError Parameter abData
83h xxxxxxxx xx xx xx xx T1B1B2B3B4 n1...nx
1Byte 4Bytes 1 Byte 1 Byte 1 Bytes 1 Bytes 5 Bytes 1 – x Bytes
Offset = 0 Offset = 1 Offset = 5 Offset = 6 Offset = 7 Offset = 8 Offset = 9 Offset = 13

73S1215F, 73S1217F USB CCID Guidelines AN_12xxF_028

16 Rev. 2.10

When the command is executed unsuccessfully, such as in the case of Serial Interface, the device’s
response will be as follows:

bMessageType dwLength bSlot bSeq bStatus bError Parameter
83h xxxxxxxx xx xx xx xx T1B1B2B3B4
1Byte 4Bytes 1 Byte 1 Byte 1 Bytes 1 Bytes 5 Bytes
Offset = 0 Offset = 1 Offset = 5 Offset = 6 Offset = 7 Offset = 8 Offset = 9

Where bStatus will show current Smart Card’s status (0x4X) and bError will show the error code
according to CCID spec. The Parameter field will show the values of the original command.

5.2.1 EscapeCommand – LCD Control: 0x31
T1 = 0x31, LCD Control.
B1 = 0, Clear LCD.
 = 1, Position cursor on LCD, B2 = ‘00’, B3 = row/column (maximum is 2x16).
 = 2, Display selected canned message on LCD at current cursor, B2 = ‘00’, B3 = message index, B4 = ‘00’.
 Message index (B3) is defined as follows:
 0x00 – “ ENTER SC PIN ”
 0x01 – “ ENTER NEW PIN ”
 0x02 – “ CONFIRM NEW PIN”
 0x03 – “ RFU “
 More messages can be added if firmware program space permits.
 = 3, Write string of characters to LCD from cursor, B2 = ‘00’, B3 = ‘00’, B4 = length of string.

When B1=0x03, the host application should be responsible for making sure the string length is within the
hardware size limit (i.e. 2x16).

This escape command should never return an error. Field abData should always be empty.

5.2.2 EscapeCommand – KeyPad Control:0x32
T1 = 0x32, KeyPad Control.
B1 = 0, Configure KeyPad, B2 = Wait time (up to 255 seconds, 0=indefinite wait), B3 = rows/columns

(maximum 6 rows x 5 columns).
 = 1, KeyWait, B2 = Wait time (up to 255 seconds, 0=indefinite wait), B3 = row high nibble, column low

nibble of key.
 = 2, Wait for keys, B2 = Wait time (up to 255 seconds, 0=indefinite wait), B3 = number of keys to wait

to be pressed.
Note: *B2 will be used as current Waittime for all 3 KeyPad control commands.
The Keypad Control response will return each key pressed in the row-nibble/column-nibble format in
B2....Bn parameters field in the order that the key(s) is/are pressed. The row/column position starts from
0. When B1=0x01 or 0x02, the response will be in the same format in which B2 denotes the number of
keypress and B3..Bn denote the actual keypress position(s) (row/column) in the order that the keys are
pressed (FIFO).

When B1 of the keypad control = 0x01 or 0x02, the response will be as follows:

bMessage
Type

dwLength bSlot bSeq bStatus bError abData

83h xxxxxxxx xx xx xx xx 32 01 (or 02) Z
K1 K2…Kn

1Byte 4 Bytes 1Byte 1Byte 1Byte 1Byte nBytes
Offset = 0 Offset = 1 Offset =5 Offset = 6 Offset = 7 Offset = 8 Offset = 9

AN_12xxF_028 73S1215F, 73S1217F USB CCID Guidelines

Rev. 2.10 17

Z represents the number of key presses. K1, K2..Kn represents the key positions that were pressed.

5.2.3 Escape Command – EMV Level 1 Test Control: 0x33
T1 = 0x33, EMV Level 1 Test Automation Control

B1 = 0xX1, (least significant nibble) – ISO mode (where default IFS size would be different
 than EMV, broader range of FiDi values are accepted and a few other differences);

B1 = 0xX0, (least significant nibble) – EMV mode. When in EMV mode, acceptance of certain ATR is
more restricted. The IFS size will be 0xFE (as opposed to 0x20 as specified in ISO). In EMV test mode,
different value is used in determining if a test suite used for EMV testing is MasterCard, VISA following
specification version 4.0 or VISA following specification version 4.1. The loopback implementation is
different for each different test mode. Value of this byte is classified as follows:

0x00 – Not a test mode.
0x10 – MasterCard’s loopback (Cetecom).
0x20 – VISA’s loopback(FIME, RFI).
0x30 – VISA’s loopback(ICTK).

In order to invoke the EMV Level 1 Automation Test mode, this escape command should be sent first to
setup the firmware prior to sending the ICC_PowerOn command. The ICC_PowerOn command then
follows. If the response from the ICC_PowerOn command is successful (with an ATR), the host should
then send the BlockTransfer (0x6F) command to start the loopback test; otherwise, it should send an
ICC_PowerOFF command to conclude the test. Upon setting the device in EMV Test mode, if Slot 0 is
currently activated, it will be deactivated by the device in order to prepare for testing.

Block Transfer (0x6F command) in EMV Test Mode:

When a card is activated in EMV TEST mode for either VISA or MasterCard environment, as described
above, it is not required to include the APDU command as part of the Block Transfer packet or the
content of the Block Transfer command will be ignored. The VISA and MasterCard PSE test environment
is written specifically for a specific test lab, the firmware will handle the loopback APDU command. The
host only needs to facilitate and initiate this test mode by sending an empty Block Transfer packet after a
successful activation of the card (ICC_PowerOn in EMV and either VISA or MCI mode). After the device
completed the Block Transfer command, i.e. the host receives the response for the Block Transfer
command, the host should send an ICC_PowerOff command to conclude the EMV Level 1 Test.

5.2.3.1 EMV LEVEL I Certification Tests

The EMV compliant test suite follows its specification written for Payment System Environment.
There are several test labs, listed on the EMVco.com website, qualified to perform these tests. There are
two Protocol test suites that can be used to qualify for EMV Level I compliance. In other words, passing
either one of these suites will qualify as EMV Level I compliance. The CCID firmware code is written to
link to the two TSC libraries (LAPI and HAPI) that comply with both tests. However, since each lab has its
own test scripts and the test scripts are different according to the lab’s setup, the host application layer
must be written, and catered, specifically for each test lab’s requirements. The following two subsections
describe both loopback tests that must be written on the host side’s application in order to invoke the
appropriate test.

Before Starting EMV Test Mode:

When a card is inserted in the slot, the host’s Smart Card Resource Manager automatically activates it as
part of its scanning/polling process (this is true for both Microsoft’s Generic CCID driver and TSC’s
custom driver). These steps below outline a procedure to start the EMV Automation test. Follow these
steps in their exact order to guarantee the correct test session:

73S1215F, 73S1217F USB CCID Guidelines AN_12xxF_028

18 Rev. 2.10

1. From the Host

2. U

U: Connect the device via a USB port from the host computer running either Windows
XP or Windows Vista. Wait until the driver is successfully loaded and enumerated (driver appears in
the Device Manager window).

From the Host

3.

U: Bring up the C# application, select the TSC device. Then select option ‘EMV Level
1 Test Automation’ and the appropriate test environment under ‘Mode’ to send the ESCAPE
command to the device to be ready for EMV Test Mode (VISA or MCI). Accept the default value or
enter a desired delay value (in seconds) to space out the loopback test as required by the EMV test
environment/test suite. For USB interface, with Windows XP, any value of 10 seconds or higher is
desirable.
From the EMV Test Side

4. Both the card/EMV Test side and the host C# + device should be synchronized and test should start
at this point.

: Select to start running the multi-test mode (or automatic test mode) to start
the EMV test on the card.

After the testing is completed, reset the 73S12xxF device to take it back into ISO mode, or out of EMV
test mode.

5.2.3.2 EMV Test Mode

An EMV test (or session) is defined to be commands that run from Activation of the card to Deactivation
of the card. A Block Transfer may or may not happen in the session depends on the card’s ATR
response. The host may setup the EMV PSE test environment via the Escape (0x33) command. The
first parameter byte (B1) of the Escape command needs to specifically tell whether a test mode is invoked
and if so, it should be invoked using MCI or VISA test environment. Please review the Escape – EMV
Level 1 Test Control section for details about this test mode. Following the successful PowerOn
command, the host needs to send the Block Transfer command. This command packet can be with or
without the APDU command (command length = 0). Since the APDU command will be ignored by the
firmware in test mode, the Block Transfer can be empty or with any data The test loopback will be
handled by the firmware and upon finishing up one test, the firmware will respond to the host with status
of whether a test session run with successful return code or not. NOTE : an unsuccessful return code
may or may not be a failed test. The test verdict (test passed or test failed) is determined only on the
card side. The following flow chart depicts the minimal coding required on the host application to invoke
EMV PSE test environment

AN_12xxF_028 73S1215F, 73S1217F USB CCID Guidelines

Rev. 2.10 19

Initialization

Enter Delay Time
(in Secs)

Power-Up Ok
(Good ATR)?

Start LoopBack by
sending a Block

Transfer (0x6F) with 0
Lenth data

EMV Power
DownMulti

Single

Select Single or
Multi test?

Delay Time Wait

EMV Power Up In
Test Mode

Yes

SingleShot?

No

No

Escape Cmd w/B1 =
MCI(10) or VISA (20

or 30)EMV Mode

Yes

Figure 3: Add EMV Test Mode

5.2.3.3 MasterCard Loopback Test

TSC used CETECOM test lab (in Germany – as listed on EMVco website) and FIME test lab (in France –
as listed on EMVco website); who used MCI test suite to qualify their EMV Level I test services. The
loopback flowchart below is specific to both FIME and Cetecom’s Level I Protocol test scripts. This
flowchart shows in details flow of the entire MCI test suite with coding to be done on both host (invoking
the test) and the device side (manages all aspect of smart card’s EMV test). Source code is also
included in the CD ROM.

73S1215F, 73S1217F USB CCID Guidelines AN_12xxF_028

20 Rev. 2.10

Initialization

EMV Power Up

Power-Up Ok
(Good ATR)?

Select File
1PAY.SYS.DDF01

EMV Power
Down

Yes

Warm Reset OK?No

Yes

No

APDU Exchange

R-APDU < 6
bytes?

Yes

Yes

Wait 5 seconds

Exchange OK?

Yes

No

INS='70'?No

No

Extrac Next C-APDU
from R-APDU

No

Negotiable
Mode? PPS OK?Yes

No

No

Yes

Figure 4: MasterCard Loopback Test

AN_12xxF_028 73S1215F, 73S1217F USB CCID Guidelines

Rev. 2.10 21

5.2.3.4 VISA-1 Loopback Test

TSC used RFI Global test lab (in UK – as listed on EMVco website); who used VISA test suite to qualify
their EMV Level I test services. The Loopback flowchart below is specific to RFI’s test scripts. Source
code is also included in the CD ROM.

Initialization

Enter Delay Time
(in Secs)

Power-Up Ok
(Good ATR)?

SELECT FILE
1PAY.SYS.DDF01

EMV Power
Down

M/m

Any other Key

Warm Reset OK?

Yes

No

APDU Exchange

No

Exchange OK?

End of Record?
or No Record?

Enter (M/m) Multi-
or (anykey) Single

Shot?

Delay Time Wait

EMV Power Up

Negotiable Mode?

No

PPS OK?Yes

SingleShot?Yes

No

No

Yes

No

Yes

READ RECORD
(00 B2 'P1' 0C 00)

Yes
P1 = 01

Increment RECORD
Index (P1)

Yes

No Exchange OK?

Yes

No

Figure 5: VISA-1 Loopback Test

73S1215F, 73S1217F USB CCID Guidelines AN_12xxF_028

22 Rev. 2.10

5.2.3.5 VISA-2 Loopback Test

TSC used ICT-K test lab (in Korea – as listed on EMVco website); who used VISA test suite version 4.1 to
qualify their EMV Level I test services. This CD ROM includes source code that implements the
Loopback flowchart below.

Initialization

Enter Delay Time
(in Secs)

Power-Up Ok
(Good ATR)?

SELECT FILE
1PAY.SYS.DDF01

EMV Power
Down

M/m

Any other Key

Warm Reset OK?

Yes

No

No

Exchange OK?

End of Record?
or No Record?

Enter (M/m) Multi-
or (anykey) Single

Shot?

Delay Time Wait

EMV Power Up

Negotiable Mode?

No

PPS OK?Yes

SingleShot?Yes

No

No

Yes

No

Yes

READ RECORD
(00 B2 'P1' 0C 00)

Yes
P1 = 01

Increment RECORD
Index (P1)

Yes

No Exchange OK?

No

T-AID Present T-Select AID CommandYes

Yes

Exchange OK?

No

Yes

No

T-Book1 - 12.4 Step 1

Figure 6: VISA-2 Loopback Test

AN_12xxF_028 73S1215F, 73S1217F USB CCID Guidelines

Rev. 2.10 23

5.2.4 EscapeCommand – LED Control: 0x34
This escape command can be used to control LED0. The default purpose is to use LED as a smart card
ready indicator (card activated and powered on), but it can be used for any other indicator function.
When the blinking setting (such as blinking rate) is set, it will stay globally set until the next setting or card
deactivation in slot 0. For example, if an escape command is sent from the host to set the blinking to be
500 ms apart, it will stay at 500ms until it is changed by the next escape command modifying the rate or
turning the led solidly off or on. The parameters for this command are executed as follows:

T1 = 0x34, LED Control command.

B1 = 0x00,

Turn off LED0.
 = 0x01,

Turn ON LED0
 = 0x02,

Enable blinking of LED0. When a card is removed, LED0 will be turned off. When a card in slot 0 is
reactivated LED0 will be turned on but will not be blinking.

B2 = #. Time in 100 ms that indicates blinking rate. Only applicable when B1 = 0x02.

B3 = Brightness control. When B1 <> 0xX0, use this value to set level of LED’s brightness as indicated.

This escape command should never return an error.

5.2.5 EscapeCommand – DFU Detach: 0x41
Upon receiving this ESCAPE command from the host, the firmware will complete the command with a
successful response. It then erases the checkcode in preparing for the DFU Boot Loader to take over. A
Soft_Reset will follow to restart the device, which will cause a USB power cycle. See the 73S12xxF
Smart Card Terminal Controller Family. DFU Application Note for more details.

73S1215F, 73S1217F USB CCID Guidelines AN_12xxF_028

24 Rev. 2.10

5.2.6 EscapeCommand – Serial Interface Control: 0x50
T1 = 0x50, Serial Interface Control.

B1 = 0, Serial Interface Initialization. Supported baud rates are based on the device running the CPU

clock. The rates shown here are assuming the CPU clock is running at 24Mhz. The Serial rates
are specified in api_struct_12.h.

 = 1, Transmit data through Serial Interface. The number of bytes to be transmitted is specified in

TxSize (B2).
Wait until data is completely transmitted before sending response.

 = 2, Receive data from Serial Interface. Number of expected bytes is specified in RxSize (B3).
 = 3, Transmit then Receive through Serial Interface. First, transmit data through Serial Interface.

The number of bytes to be transmitted is specified in TxSize (B2). After data is transmitted,
expect to receive the number of bytes as specified in RxSize (B3) from Serial Interface. If there
is an error during either transmission or reception, the command will be abandoned and error
code will be returned to the host.

= 4, Receive data then Transmit the given data through Serial Interface. First, receive data from
Serial Interface. The number of expected bytes to receive is specified in RxSize (B3). Once all
bytes, as specified in RxSize (B3), are received, transmit the TxSize (B2) data bytes through
Serial Interface. If there is an error during either transmission or reception, the command will be
abandoned and error code will be returned to the host.

B2 = Number of bytes to be transmitted.
B3 = Number of bytes to be received.

//Please note: Serial data rates are dependent on the device's CPU Clock rate. The following table
//Shows supported rates based on specific CPU Clock:
// CPU CLK
//Rates 3.69Mhz 6Mhz 12Mhz 24Mhz
//600 OK N/A N/A N/A
//1200 OK OK OK N/A
//2400 OK OK OK N/A
//4800 OK OK N/A OK
//9600 OK N/A OK OK
//14400 OK OK OK OK
//19200 OK N/A N/A OK
//28800 OK N/A OK OK
//38400 OK N/A N/A N/A
//57600 OK N/A N/A OK
//115200 OK N/A N/A N/A
//125000 N/A N/A OK OK
//250000 N/A N/A N/A OK
//375000 N/A N/A OK OK

AN_12xxF_028 73S1215F, 73S1217F USB CCID Guidelines

Rev. 2.10 25

6 Acronyms
APDU Application Protocol Data Unit
API Application Programming Interface
ATR Answer To Reset
COM Communication Port
DFU Device Firmware Upgrade
DTK Development ToolKit
EMV Euro, Master, Visa
HAPI High Level API
HCT Hardware Compatibility Test
ISO International Standards Organization
ISP In-System Programming
JICSAP Japan Ic Card System Application council
LAPI Low Level API
LCD Liquid Crystal Display
PC Personal Computer
PIN Personal Indentification
RAM Random Access Memory
ROM Read Only Memory
TSC Teridian Semiconductor Corporation
USB Universal Serial Bus
WHQL Windows Hardware Quality Lab

73S1215F, 73S1217F USB CCID Guidelines AN_12xxF_028

26 Rev. 2.10

7 Related Documentation
The following 73S12xxF documents are available from Teridian Semiconductor Corporation:

71S1215F Data Sheet
71S1217F Data Sheet
73S12xxF Smart Card Terminal Controller Family Software User’s Guide
73S12xxF Evaluation Board User’s Guide
Teridian Flash Programming Tool
73S1215F, 73S1217F Boot Loader – DFU Class Firmware Application Note
73S1215F, 73S1217F Windows XP 32 USB CCID and DFU Drivers Installation Guide
73S1215, 73S1217F CCID Application Note

8 Contact Information
For more information about Maxim products or to check the availability of the 73S12xxF, contact technical
support at www.maxim-ic.com/support.

http://www.maxim-ic.com/support�

AN_12xxF_028 73S1215F, 73S1217F USB CCID Guidelines

Rev. 2.10 27

Revision History
Revision Date Description
2.0 1/6/2009 Documents Library Rev. 4.00(DFU), Code/Firmware Rev. TSC12xx.2.00.
2.00 4/27/2009 Added DFU build/project description. The DFU Boot Loader is a new feature

added to this release.
Added a new escape command to indicate card events by manipulating
LED0.

2.10 9/14/2009 Added a paragraph at the end of Section 5 about LED0 indicator control.
In Table 4, rewrote the 0x034 Any Other Bytes description.
Rewrote Section 5.2.4, EscapeCommand – LED Control: 0x34.
Change document title from 73S1217F, 73S1217F CCID Application Note to
73S1217F, 73S1217F USB CCID Guidelines.

	Figures
	Tables
	1 Introduction
	2 Overview
	3 CCID Application Firmware
	3.1 CCID Application Build Environments
	3.2 Suspend and Resume Processing
	3.3 Endpoint 0 Processing
	3.4 Card Slot Status Processing via (interrupt) Endpoint 2
	3.5 CCID Command Processing
	3.6 Command Error Codes
	3.7 Mechanical Features Porcessing
	3.8 Escape Command Processing

	4 Driver Selection and Installation
	5 Smart Card Application
	5.1 Multiple Slot Operation
	5.2 Sending Escape Commands
	5.2.1 EscapeCommand – LCD Control: 0x31
	5.2.2 EscapeCommand – KeyPad Control:0x32
	5.2.3 Escape Command – EMV Level 1 Test Control: 0x33
	5.2.4 EscapeCommand – LED Control: 0x34
	5.2.5 EscapeCommand – DFU Detach: 0x41
	5.2.6 22BEscapeCommand – Serial Interface Control: 0x50

	6 Acronyms
	7 Related Documentation
	8 Contact Information
	Revision History

